Interpolation formula.
- t is the value moving (could be time). It is your cursor. Or input value from 0 to c
- d is beginning range of your output
- b is the end of your range output
- c is the maximum of your input cursor
//linear interpolation function linearTween(t, d, b, c) { return c*t/d + b; };
// quadratic easing in - accelerating from zero velocity function easeInQuad(t, d, b, c) { t /= d; return c*t*t + b; };
// quadratic easing out - decelerating to zero velocity function easeOutQuad(t, d, b, c) { t /= d; return -c * t*(t-2) + b; };
// quadratic easing in/out - acceleration until halfway, then deceleration function easeInOutQuad(t, d, b, c) { t /= d/2; if (t < 1) return c/2*t*t + b; t--; return -c/2 * (t*(t-2) - 1) + b; };
// cubic easing in - accelerating from zero velocity function easeInCubic(t, d, b, c) { t /= d; return c*t*t*t + b; };
// cubic easing out - decelerating to zero velocity function easeOutCubic(t, d, b, c) { t /= d; t--; return c*(t*t*t + 1) + b; };
// cubic easing in/out - acceleration until halfway, then deceleration function easeInOutCubic(t, d, b, c) { t /= d/2; if (t < 1) return c/2*t*t*t + b; t -= 2; return c/2*(t*t*t + 2) + b; };
// quartic easing in - accelerating from zero velocity function easeInQuart(t, d, b, c) { t /= d; return c*t*t*t*t + b; };
// quartic easing out - decelerating to zero velocity function easeOutQuart(t, d, b, c) { t /= d; t--; return -c * (t*t*t*t - 1) + b; };
// quartic easing in/out - acceleration until halfway, then deceleration function easeInOutQuart(t, d, b, c) { t /= d/2; if (t < 1) return c/2*t*t*t*t + b; t -= 2; return -c/2 * (t*t*t*t - 2) + b; };
// quintic easing in - accelerating from zero velocity function easeInQuint(t, d, b, c) { t /= d; return c*t*t*t*t*t + b; };
// quintic easing out - decelerating to zero velocity function easeOutQuint(t, d, b, c) { t /= d; t--; return c*(t*t*t*t*t + 1) + b; };
// quintic easing in/out - acceleration until halfway, then deceleration function easeInOutQuint(t, d, b, c) { t /= d/2; if (t < 1) return c/2*t*t*t*t*t + b; t -= 2; return c/2*(t*t*t*t*t + 2) + b; };
// sinusoidal easing in - accelerating from zero velocity function easeInSine(t, d, b, c) { return -c * Math.cos(t/d * (Math.PI/2)) + c + b; };
// sinusoidal easing out - decelerating to zero velocity function easeOutSine(t, d, b, c) { return c * Math.sin(t/d * (Math.PI/2)) + b; };
// sinusoidal easing in/out - accelerating until halfway, then decelerating function easeInOutSine(t, d, b, c) { return -c/2 * (Math.cos(Math.PI*t/d) - 1) + b; };
// exponential easing in - accelerating from zero velocity function easeInExpo(t, d, b, c) { return c * Math.pow( 2, 10 * (t/d - 1) ) + b; };
// exponential easing out - decelerating to zero velocity function easeOutExpo(t, d, b, c) { return c * ( -Math.pow( 2, -10 * t/d ) + 1 ) + b; };
// exponential easing in/out - accelerating until halfway, then decelerating function easeInOutExpo(t, d, b, c) { t /= d/2; if (t < 1) return c/2 * Math.pow( 2, 10 * (t - 1) ) + b; t--; return c/2 * ( -Math.pow( 2, -10 * t) + 2 ) + b; };
// circular easing in - accelerating from zero velocity function easeInCirc(t, d, b, c) { t /= d; return -c * (Math.sqrt(1 - t*t) - 1) + b; };
// circular easing out - decelerating to zero velocity function easeOutCirc(t, d, b, c) { t /= d; t--; return c * Math.sqrt(1 - t*t) + b; };
// circular easing in/out - acceleration until halfway, then deceleration function easeInOutCirc(t, d, b, c) { t /= d/2; if (t < 1) return -c/2 * (Math.sqrt(1 - t*t) - 1) + b; t -= 2; return c/2 * (Math.sqrt(1 - t*t) + 1) + b; };